libfranka  0.8.0
FCI C++ API
generate_cartesian_velocity_motion.cpp

An example showing how to generate a Cartesian velocity motion.

Warning
Before executing this example, make sure there is enough space in front of the robot.
// Copyright (c) 2017 Franka Emika GmbH
// Use of this source code is governed by the Apache-2.0 license, see LICENSE
#include <cmath>
#include <iostream>
#include <franka/robot.h>
int main(int argc, char** argv) {
if (argc != 2) {
std::cerr << "Usage: " << argv[0] << " <robot-hostname>" << std::endl;
return -1;
}
try {
franka::Robot robot(argv[1]);
// First move the robot to a suitable joint configuration
std::array<double, 7> q_goal = {{0, -M_PI_4, 0, -3 * M_PI_4, 0, M_PI_2, M_PI_4}};
MotionGenerator motion_generator(0.5, q_goal);
std::cout << "WARNING: This example will move the robot! "
<< "Please make sure to have the user stop button at hand!" << std::endl
<< "Press Enter to continue..." << std::endl;
std::cin.ignore();
robot.control(motion_generator);
std::cout << "Finished moving to initial joint configuration." << std::endl;
// Set additional parameters always before the control loop, NEVER in the control loop!
// Set the joint impedance.
robot.setJointImpedance({{3000, 3000, 3000, 2500, 2500, 2000, 2000}});
// Set the collision behavior.
std::array<double, 7> lower_torque_thresholds_nominal{
{25.0, 25.0, 22.0, 20.0, 19.0, 17.0, 14.}};
std::array<double, 7> upper_torque_thresholds_nominal{
{35.0, 35.0, 32.0, 30.0, 29.0, 27.0, 24.0}};
std::array<double, 7> lower_torque_thresholds_acceleration{
{25.0, 25.0, 22.0, 20.0, 19.0, 17.0, 14.0}};
std::array<double, 7> upper_torque_thresholds_acceleration{
{35.0, 35.0, 32.0, 30.0, 29.0, 27.0, 24.0}};
std::array<double, 6> lower_force_thresholds_nominal{{30.0, 30.0, 30.0, 25.0, 25.0, 25.0}};
std::array<double, 6> upper_force_thresholds_nominal{{40.0, 40.0, 40.0, 35.0, 35.0, 35.0}};
std::array<double, 6> lower_force_thresholds_acceleration{{30.0, 30.0, 30.0, 25.0, 25.0, 25.0}};
std::array<double, 6> upper_force_thresholds_acceleration{{40.0, 40.0, 40.0, 35.0, 35.0, 35.0}};
lower_torque_thresholds_acceleration, upper_torque_thresholds_acceleration,
lower_torque_thresholds_nominal, upper_torque_thresholds_nominal,
lower_force_thresholds_acceleration, upper_force_thresholds_acceleration,
lower_force_thresholds_nominal, upper_force_thresholds_nominal);
double time_max = 4.0;
double v_max = 0.1;
double angle = M_PI / 4.0;
double time = 0.0;
robot.control([=, &time](const franka::RobotState&,
time += period.toSec();
double cycle = std::floor(pow(-1.0, (time - std::fmod(time, time_max)) / time_max));
double v = cycle * v_max / 2.0 * (1.0 - std::cos(2.0 * M_PI / time_max * time));
double v_x = std::cos(angle) * v;
double v_z = -std::sin(angle) * v;
franka::CartesianVelocities output = {{v_x, 0.0, v_z, 0.0, 0.0, 0.0}};
if (time >= 2 * time_max) {
std::cout << std::endl << "Finished motion, shutting down example" << std::endl;
return franka::MotionFinished(output);
}
return output;
});
} catch (const franka::Exception& e) {
std::cout << e.what() << std::endl;
return -1;
}
return 0;
}