An example showing how to generate a Cartesian motion with an external control loop.
An example showing how to generate a Cartesian motion with an external control loop.
#include <cmath>
#include <iostream>
int main(int argc, char** argv) {
if (argc != 2) {
std::cerr << "Usage: " << argv[0] << " <robot-hostname>" << std::endl;
return -1;
}
try {
setDefaultBehavior(robot);
std::array<double, 7> q_goal = {{0, -M_PI_4, 0, -3 * M_PI_4, 0, M_PI_2, M_PI_4}};
std::cout << "WARNING: This example will move the robot! "
<< "Please make sure to have the user stop button at hand!" << std::endl
<< "Press Enter to continue..." << std::endl;
std::cin.ignore();
std::cout << "Finished moving to initial joint configuration." << std::endl;
{{20.0, 20.0, 18.0, 18.0, 16.0, 14.0, 12.0}}, {{20.0, 20.0, 18.0, 18.0, 16.0, 14.0, 12.0}},
{{20.0, 20.0, 18.0, 18.0, 16.0, 14.0, 12.0}}, {{20.0, 20.0, 18.0, 18.0, 16.0, 14.0, 12.0}},
{{20.0, 20.0, 20.0, 25.0, 25.0, 25.0}}, {{20.0, 20.0, 20.0, 25.0, 25.0, 25.0}},
{{20.0, 20.0, 20.0, 25.0, 25.0, 25.0}}, {{20.0, 20.0, 20.0, 25.0, 25.0, 25.0}});
std::array<double, 16> initial_pose;
double time = 0.0;
auto callback_control = [&time, &initial_pose](
time += period.toSec();
if (time == 0.0) {
initial_pose = robot_state.O_T_EE_c;
}
constexpr double kRadius = 0.3;
double angle = M_PI / 4 * (1 - std::cos(M_PI / 5.0 * time));
double delta_x = kRadius * std::sin(angle);
double delta_z = kRadius * (std::cos(angle) - 1);
std::array<double, 16> new_pose = initial_pose;
new_pose[12] += delta_x;
new_pose[14] += delta_z;
if (time >= 10.0) {
std::cout << std::endl << "Finished motion, shutting down example" << std::endl;
return franka::MotionFinished(new_pose);
}
return new_pose;
};
bool motion_finished = false;
research_interface::robot::Move::ControllerMode::kJointImpedance);
while (!motion_finished) {
auto read_once_return = active_control->readOnce();
auto robot_state = read_once_return.first;
auto duration = read_once_return.second;
auto cartesian_positions = callback_control(robot_state, duration);
motion_finished = cartesian_positions.motion_finished;
active_control->writeOnce(cartesian_positions);
}
std::cout << e.what() << std::endl;
return -1;
}
return 0;
}
Implements the ActiveControlBase abstract class.
Contains the franka::ActiveMotionGenerator type.
An example showing how to generate a joint pose motion to a goal position.
Definition examples_common.h:31
Stores values for Cartesian pose motion generation.
Definition control_types.h:127
Represents a duration with millisecond resolution.
Definition duration.h:19
Maintains a network connection to the robot, provides the current robot state, gives access to the mo...
Definition robot.h:68
void control(std::function< Torques(const RobotState &, franka::Duration)> control_callback, bool limit_rate=false, double cutoff_frequency=kDefaultCutoffFrequency)
Starts a control loop for sending joint-level torque commands.
void setCollisionBehavior(const std::array< double, 7 > &lower_torque_thresholds_acceleration, const std::array< double, 7 > &upper_torque_thresholds_acceleration, const std::array< double, 7 > &lower_torque_thresholds_nominal, const std::array< double, 7 > &upper_torque_thresholds_nominal, const std::array< double, 6 > &lower_force_thresholds_acceleration, const std::array< double, 6 > &upper_force_thresholds_acceleration, const std::array< double, 6 > &lower_force_thresholds_nominal, const std::array< double, 6 > &upper_force_thresholds_nominal)
Changes the collision behavior.
virtual std::unique_ptr< ActiveControlBase > startCartesianPoseControl(const research_interface::robot::Move::ControllerMode &control_type)
Starts a new cartesian position motion generator.
Contains common types and functions for the examples.
Contains exception definitions.
Contains the franka::Robot type.
Base class for all exceptions used by libfranka.
Definition exception.h:20
Describes the robot state.
Definition robot_state.h:34