An example showing how to execute consecutive motions with error recovery.
An example showing how to execute consecutive motions with error recovery.
#include <cmath>
#include <iostream>
int main(int argc, char** argv) {
if (argc != 2) {
std::cerr << "Usage: " << argv[0] << " <robot-hostname>" << std::endl;
return -1;
}
try {
setDefaultBehavior(robot);
std::array<double, 7> q_goal = {{0, -M_PI_4, 0, -3 * M_PI_4, 0, M_PI_2, M_PI_4}};
std::cout << "WARNING: This example will move the robot! "
<< "Please make sure to have the user stop button at hand!" << std::endl
<< "Press Enter to continue..." << std::endl;
std::cin.ignore();
std::cout << "Finished moving to initial joint configuration." << std::endl;
{{10.0, 10.0, 9.0, 9.0, 8.0, 7.0, 6.0}}, {{10.0, 10.0, 9.0, 9.0, 8.0, 7.0, 6.0}},
{{10.0, 10.0, 9.0, 9.0, 8.0, 7.0, 6.0}}, {{10.0, 10.0, 9.0, 9.0, 8.0, 7.0, 6.0}},
{{10.0, 10.0, 10.0, 12.5, 12.5, 12.5}}, {{10.0, 10.0, 10.0, 12.5, 12.5, 12.5}},
{{10.0, 10.0, 10.0, 12.5, 12.5, 12.5}}, {{10.0, 10.0, 10.0, 12.5, 12.5, 12.5}});
for (size_t i = 0; i < 5; i++) {
std::cout << "Executing motion." << std::endl;
try {
double time_max = 4.0;
double omega_max = 0.2;
double time = 0.0;
double cycle = std::floor(std::pow(-1.0, (time - std::fmod(time, time_max)) / time_max));
double omega = cycle * omega_max / 2.0 * (1.0 - std::cos(2.0 * M_PI / time_max * time));
if (time >= 2 * time_max) {
std::cout << std::endl << "Finished motion." << std::endl;
return franka::MotionFinished(velocities);
}
return velocities;
});
std::cout << e.what() << std::endl;
std::cout << "Running error recovery..." << std::endl;
}
}
std::cout << e.what() << std::endl;
return -1;
}
std::cout << "Finished." << std::endl;
return 0;
}
An example showing how to generate a joint pose motion to a goal position.
Definition examples_common.h:31
Represents a duration with millisecond resolution.
Definition duration.h:19
double toSec() const noexcept
Returns the stored duration in .
Stores values for joint velocity motion generation.
Definition control_types.h:99
Maintains a network connection to the robot, provides the current robot state, gives access to the mo...
Definition robot.h:68
void control(std::function< Torques(const RobotState &, franka::Duration)> control_callback, bool limit_rate=false, double cutoff_frequency=kDefaultCutoffFrequency)
Starts a control loop for sending joint-level torque commands.
void setCollisionBehavior(const std::array< double, 7 > &lower_torque_thresholds_acceleration, const std::array< double, 7 > &upper_torque_thresholds_acceleration, const std::array< double, 7 > &lower_torque_thresholds_nominal, const std::array< double, 7 > &upper_torque_thresholds_nominal, const std::array< double, 6 > &lower_force_thresholds_acceleration, const std::array< double, 6 > &upper_force_thresholds_acceleration, const std::array< double, 6 > &lower_force_thresholds_nominal, const std::array< double, 6 > &upper_force_thresholds_nominal)
Changes the collision behavior.
void automaticErrorRecovery()
Runs automatic error recovery on the robot.
Contains common types and functions for the examples.
Contains exception definitions.
Contains the franka::Robot type.
ControlException is thrown if an error occurs during motion generation or torque control.
Definition exception.h:73
Base class for all exceptions used by libfranka.
Definition exception.h:20
Describes the robot state.
Definition robot_state.h:34